Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell Metab ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729152

RESUMO

Adipose tissue plasticity is orchestrated by molecularly and functionally diverse cells within the stromal vascular fraction (SVF). Although several mouse and human adipose SVF cellular subpopulations have by now been identified, we still lack an understanding of the cellular and functional variability of adipose stem and progenitor cell (ASPC) populations across human fat depots. To address this, we performed single-cell and bulk RNA sequencing (RNA-seq) analyses of >30 SVF/Lin- samples across four human adipose depots, revealing two ubiquitous human ASPC (hASPC) subpopulations with distinct proliferative and adipogenic properties but also depot- and BMI-dependent proportions. Furthermore, we identified an omental-specific, high IGFBP2-expressing stromal population that transitions between mesothelial and mesenchymal cell states and inhibits hASPC adipogenesis through IGFBP2 secretion. Our analyses highlight the molecular and cellular uniqueness of different adipose niches, while our discovery of an anti-adipogenic IGFBP2+ omental-specific population provides a new rationale for the biomedically relevant, limited adipogenic capacity of omental hASPCs.

2.
Nat Metab ; 6(3): 433-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504132

RESUMO

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.


Assuntos
Alcaloides , Sarcopenia , Humanos , Masculino , Camundongos , Animais , Sarcopenia/tratamento farmacológico , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , NAD/metabolismo , Caenorhabditis elegans , Envelhecimento , Músculo Esquelético/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo
3.
Biosens Bioelectron ; 220: 114826, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36371959

RESUMO

Nicotinamide riboside (NR) is a form of vitamin B3 and is one of the most studied compounds for the restoration of cellular NAD+ levels demonstrating clinical potential in many metabolic and age-related disorders. Despite its wide commercial availability as a powerful nutraceutical, our understanding of NR uptake by different cells and tissues is greatly limited by the lack of noninvasive in vivo imaging tools limiting its clinical translation. Here, we report the development and validation of a bioluminescent NR uptake probe (BiNR) for non-invasive longitudinal imaging of NR uptake both in vitro and in vivo. In addition, we optimized an assay that allows monitoring of NR flux without the need to transfect cells with the luciferase gene, enabling the use of the BiNR probe in clinical samples, as demonstrated with human T cells. Lastly, we used BiNR to investigate the role of NR uptake in cancer prevalence and metastases formation in triple negative breast cancer (TNBC) animal model. Our results demonstrate that NR supplementation results in a significant increase in cancer prevalence and metastases of TNBC to the brain. These results outline the important role of powerful nutraceuticals like NR in cancer metabolism and the need to personalize their use in certain patient populations.


Assuntos
Técnicas Biossensoriais , Neoplasias de Mama Triplo Negativas , Animais , Humanos , NAD , Niacinamida/metabolismo , Compostos de Piridínio
4.
Front Cell Dev Biol ; 10: 1049653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438552

RESUMO

Nicotinamide riboside kinases (NRKs) control the conversion of dietary Nicotinamide Riboside (NR) to NAD+, but little is known about their contribution to endogenous NAD+ turnover and muscle plasticity during skeletal muscle growth and remodeling. Using NRK1/2 double KO (NRKdKO) mice, we investigated the influence of NRKs on NAD+ metabolism and muscle homeostasis, and on the response to neurogenic muscle atrophy and regeneration following muscle injury. Muscles from NRKdKO animals have altered nicotinamide (NAM) salvage and a decrease in mitochondrial content. In single myonuclei RNAseq of skeletal muscle, NRK2 mRNA expression is restricted to type IIx muscle fibers, and perturbed NAD+ turnover and mitochondrial metabolism shifts the fiber type composition of NRKdKO muscle to fast glycolytic IIB fibers. NRKdKO does not influence muscle atrophy during denervation but alters muscle repair after myofiber injury. During regeneration, muscle stem cells (MuSCs) from NRKdKO animals hyper-proliferate but fail to differentiate. NRKdKO also alters the recovery of NAD+ during muscle regeneration as well as mitochondrial adaptations and extracellular matrix remodeling required for tissue repair. These metabolic perturbations result in a transient delay of muscle regeneration which normalizes during myofiber maturation at late stages of regeneration via over-compensation of anabolic IGF1-Akt signaling. Altogether, we demonstrate that NAD+ synthesis controls mitochondrial metabolism and fiber type composition via NRK1/2 and is rate-limiting for myogenic commitment and mitochondrial maturation during skeletal muscle repair.

5.
Mol Metab ; 66: 101605, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165811

RESUMO

OBJECTIVE: Disturbances in NAD+ metabolism have been described as a hallmark for multiple metabolic and age-related diseases, including type 2 diabetes. While alterations in pancreatic ß-cell function are critical determinants of whole-body glucose homeostasis, the role of NAD+ metabolism in the endocrine pancreas remains poorly explored. Here, we aimed to evaluate the role of nicotinamide riboside (NR) metabolism in maintaining NAD+ levels and pancreatic ß-cell function in pathophysiological conditions. METHODS: Whole body and pancreatic ß-cell-specific NRK1 knockout (KO) mice were metabolically phenotyped in situations of high-fat feeding and aging. We also analyzed pancreatic ß-cell function, ß-cell mass and gene expression. RESULTS: We first demonstrate that NRK1, the essential enzyme for the utilization of NR, is abundantly expressed in pancreatic ß-cells. While NR treatment did not alter glucose-stimulated insulin secretion in pancreatic islets from young healthy mice, NRK1 knockout mice displayed glucose intolerance and compromised ß-cells response to a glucose challenge upon high-fat feeding or aging. Interestingly, ß cell dysfunction stemmed from the functional failure of other organs, such as liver and kidney, and the associated changes in circulating peptides and hormones, as mice lacking NRK1 exclusively in ß-cells did not show altered glucose homeostasis. CONCLUSIONS: This work unveils a new physiological role for NR metabolism in the maintenance of glucose tolerance and pancreatic ß-cell function in high-fat feeding or aging conditions.


Assuntos
Diabetes Mellitus Tipo 2 , NAD , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Glucose , Camundongos Knockout , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Compostos de Piridínio , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Secretoras de Insulina/patologia , Envelhecimento
6.
Cell Mol Life Sci ; 79(8): 463, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918544

RESUMO

Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.


Assuntos
NAD , Niacinamida , Animais , Modelos Animais de Doenças , Camundongos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Piridínio/uso terapêutico
7.
Metabolites ; 12(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35888754

RESUMO

The last decade has seen a strong proliferation of therapeutic strategies for the treatment of metabolic and age-related diseases based on increasing cellular NAD+ bioavailability. Among them, the dietary supplementation with NAD+ precursors-classically known as vitamin B3-has received most of the attention. Multiple molecules can act as NAD+ precursors through independent biosynthetic routes. Interestingly, eukaryote organisms have conserved a remarkable ability to utilize all of these different molecules, even if some of them are scarcely found in nature. Here, we discuss the possibility that the conservation of all of these biosynthetic pathways through evolution occurred because the different NAD+ precursors might serve specialized purposes.

8.
Nutrients ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807932

RESUMO

Through evolution, eukaryote organisms have developed the ability to use different molecules as independent precursors to generate nicotinamide adenine dinucleotide (NAD+), an essential molecule for life. However, whether these different precursors act in an additive or complementary manner is not truly well understood. Here, we have evaluated how combinations of different NAD+ precursors influence intracellular NAD+ levels. We identified dihydronicotinic acid riboside (NARH) as a new NAD+ precursor in hepatic cells. Second, we demonstrate how NARH, but not any other NAD+ precursor, can act synergistically with nicotinamide riboside (NR) to increase NAD+ levels in cultured cells and in mice. Finally, we demonstrate that the large increase in NAD+ prompted by the combination of these two precursors is due to their chemical interaction and conversion to dihydronicotinamide riboside (NRH). Altogether, this work demonstrates for the first time that NARH can act as a NAD+ precursor in mammalian cells and how different NAD+ precursors can interact and influence each other when co-administered.


Assuntos
NAD , Niacinamida , Animais , Mamíferos , Camundongos , Niacinamida/análogos & derivados , Compostos de Piridínio
9.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638936

RESUMO

Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD+ also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health and disease, studying NAD+ metabolism has become essential to monitor genetic- and/or drug-induced perturbations related to metabolic status and diseases (such as ageing, cancer or obesity), and its possible therapies. Here, we present a strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of the NAD+ metabolome in biological samples. In this method, hydrophilic interaction chromatography (HILIC) was used to separate a total of 18 metabolites belonging to pathways leading to NAD+ biosynthesis, including precursors, intermediates and catabolites. As redox cofactors are known for their instability, a sample preparation procedure was developed to handle a variety of biological matrices: cell models, rodent tissues and biofluids, as well as human biofluids (urine, plasma, serum, whole blood). For clinical applications, quantitative LC-MS/MS for a subset of metabolites was demonstrated for the analysis of the human whole blood of nine volunteers. Using this developed workflow, our methodology allows studying NAD+ biology from mechanistic to clinical applications.


Assuntos
Metaboloma , NAD/biossíntese , Plasma/metabolismo , Soro/metabolismo , Espectrometria de Massas em Tandem/métodos , Urina/fisiologia , Animais , Doadores de Sangue , Cromatografia Líquida/métodos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Monitorização Fisiológica/métodos , Oxirredução , Projetos Piloto , Plasma/química , Soro/química , Urina/química
10.
Cell Rep ; 36(8): 109565, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433037

RESUMO

Mitochondria constantly undergo fusion and fission events, referred as mitochondrial dynamics, which determine mitochondrial architecture and bioenergetics. Cultured cell studies demonstrate that mitochondrial dynamics are acutely regulated by phosphorylation of the mitochondrial fission orchestrator dynamin-related protein 1 (Drp1) at S579 or S600. However, the physiological impact and crosstalk of these phosphorylation sites is poorly understood. Here, we describe the functional interrelation between S579 and S600 phosphorylation sites in vivo and their role on mitochondrial remodeling. Mice carrying a homozygous Drp1 S600A knockin (Drp1 KI) mutation display larger mitochondria and enhanced lipid oxidation and respiratory capacities, granting improved glucose tolerance and thermogenic response upon high-fat feeding. Housing mice at thermoneutrality blunts these differences, suggesting a role for the brown adipose tissue in the protection of Drp1 KI mice against metabolic damage. Overall, we demonstrate crosstalk between Drp1 phosphorylation sites and provide evidence that their modulation could be used in the treatment and prevention of metabolic diseases.


Assuntos
Tecido Adiposo Marrom/metabolismo , Dinaminas/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Animais , Dinaminas/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mutação , Oxirredução , Fosforilação
11.
FASEB J ; 35(4): e21456, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724555

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.


Assuntos
NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/efeitos dos fármacos , Homeostase , Humanos , Túbulos Renais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , NAD/genética , Mononucleotídeo de Nicotinamida/química , Traumatismo por Reperfusão
12.
Mol Metab ; 30: 192-202, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767171

RESUMO

OBJECTIVE: A decay in intracellular NAD+ levels is one of the hallmarks of physiological decline in normal tissue functions. Accordingly, dietary supplementation with NAD+ precursors can prevent, alleviate, or even reverse multiple metabolic complications and age-related disorders in diverse model organisms. Within the constellation of NAD+ precursors, nicotinamide riboside (NR) has gained attention due to its potent NAD+ biosynthetic effects in vivo while lacking adverse clinical effects. Nevertheless, NR is not stable in circulation, and its utilization is rate-limited by the expression of nicotinamide riboside kinases (NRKs). Therefore, there is a strong interest in identifying new effective NAD+ precursors that can overcome these limitations. METHODS: Through a combination of metabolomics and pharmacological approaches, we describe how NRH, a reduced form of NR, serves as a potent NAD+ precursor in mammalian cells and mice. RESULTS: NRH acts as a more potent and faster NAD+ precursor than NR in mammalian cells and tissues. Despite the minor structural difference, we found that NRH uses different steps and enzymes to synthesize NAD+, thus revealing a new NRK1-independent pathway for NAD+ synthesis. Finally, we provide evidence that NRH is orally bioavailable in mice and prevents cisplatin-induced acute kidney injury. CONCLUSIONS: Our data identify a new pathway for NAD+ synthesis and classify NRH as a promising new therapeutic strategy to enhance NAD+ levels.


Assuntos
NAD/biossíntese , NAD/metabolismo , Niacinamida/análogos & derivados , Animais , Linhagem Celular , Masculino , Camundongos , Niacinamida/metabolismo , Niacinamida/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool) , Compostos de Piridínio , Ratos
13.
Nat Commun ; 10(1): 4291, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541116

RESUMO

Supplementation with the NAD+ precursor nicotinamide riboside (NR) ameliorates and prevents a broad array of metabolic and aging disorders in mice. However, little is known about the physiological role of endogenous NR metabolism. We have previously shown that NR kinase 1 (NRK1) is rate-limiting and essential for NR-induced NAD+ synthesis in hepatic cells. To understand the relevance of hepatic NR metabolism, we generated whole body and liver-specific NRK1 knockout mice. Here, we show that NRK1 deficiency leads to decreased gluconeogenic potential and impaired mitochondrial function. Upon high-fat feeding, NRK1 deficient mice develop glucose intolerance, insulin resistance and hepatosteatosis. Furthermore, they are more susceptible to diet-induced liver DNA damage, due to compromised PARP1 activity. Our results demonstrate that endogenous NR metabolism is critical to sustain hepatic NAD+ levels and hinder diet-induced metabolic damage, highlighting the relevance of NRK1 as a therapeutic target for metabolic disorders.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatopatias/prevenção & controle , Niacinamida/análogos & derivados , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Animais , Glicemia , Dano ao DNA , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Predisposição Genética para Doença/genética , Intolerância à Glucose , Hepatócitos/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/patologia , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Niacinamida/genética , Niacinamida/metabolismo , Niacinamida/farmacologia , Compostos de Piridínio
14.
Am J Clin Nutr ; 110(3): 605-616, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374571

RESUMO

BACKGROUND: Constitutional thinness (CT) is a state of low but stable body weight (BMI ≤18 kg/m2). CT subjects have normal-range hormonal profiles and food intake but exhibit resistance to weight gain despite living in the modern world's obesogenic environment. OBJECTIVE: The goal of this study is to identify molecular mechanisms underlying this protective phenotype against weight gain. METHODS: We conducted a clinical overfeeding study on 30 CT subjects and 30 controls (BMI 20-25 kg/m2) matched for age and sex. We performed clinical and integrative molecular and transcriptomic analyses on white adipose and muscle tissues. RESULTS: Our results demonstrate that adipocytes were markedly smaller in CT individuals (mean ± SEM: 2174 ± 142 µm 2) compared with controls (3586 ± 216 µm2) (P < 0.01). The mitochondrial respiratory capacity was higher in CT adipose tissue, particularly at the level of complex II of the electron transport chain (2.2-fold increase; P < 0.01). This higher activity was paralleled by an increase in mitochondrial number (CT compared with control: 784 ± 27 compared with 675 ± 30 mitochondrial DNA molecules per cell; P < 0.05). No evidence for uncoupled respiration or "browning" of the white adipose tissue was found. In accordance with the mitochondrial differences, CT subjects had a distinct adipose transcriptomic profile [62 differentially expressed genes (false discovery rate of 0.1 and log fold change >0.75)], with many differentially expressed genes associating with positive metabolic outcomes. Pathway analyses revealed an increase in fatty acid oxidation ( P = 3 × 10-04) but also triglyceride biosynthesis (P = 3.6 × 10-04). No differential response to the overfeeding was observed in the 2 groups. CONCLUSIONS: The distinct molecular signature of the adipose tissue in CT individuals suggests the presence of augm ented futile lipid cycling, rather than mitochondrial uncoupling, as a way to increase energy expenditure in CT individuals. We propose that increased mitochondrial function in adipose tissue is an important mediator in sustaining the low body weight in CT individuals. This knowledge could ultimately allow more targeted approaches for weight management treatment strategies. This trial was registered at clinicaltrials.gov as NCT02004821.


Assuntos
Tecido Adiposo Branco/metabolismo , Mitocôndrias/metabolismo , Magreza/metabolismo , Adipócitos Brancos/fisiologia , Adulto , Estudos de Casos e Controles , Ingestão de Energia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Fatores de Tempo , Transcriptoma , Adulto Jovem
15.
Br J Pharmacol ; 176(17): 3250-3263, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31166006

RESUMO

BACKGROUND AND PURPOSE: Quinic acid (QA) is an abundant natural compound from plant sources which may improve metabolic health. However, little attention has been paid to its effects on pancreatic beta-cell functions, which contribute to the control of metabolic health by lowering blood glucose. Strategies targeting beta-cell signal transduction are a new approach for diabetes treatment. This study investigated the efficacy of QA to stimulate beta-cell function by targeting the basic molecular machinery of metabolism-secretion coupling. EXPERIMENTAL APPROACH: We measured bioenergetic parameters and insulin exocytosis in a model of insulin-secreting beta-cells (INS-1E), together with Ca2+ homeostasis, using genetically encoded sensors, targeted to different subcellular compartments. Islets from mice chronically infused with QA were also assessed. KEY RESULTS: QA triggered transient cytosolic Ca2+ increases in insulin-secreting cells by mobilizing Ca2+ from intracellular stores, such as endoplasmic reticulum. Following glucose stimulation, QA increased glucose-induced mitochondrial Ca2+ transients. We also observed a QA-induced rise of the NAD(P)H/NAD(P)+ ratio, augmented ATP synthase-dependent respiration, and enhanced glucose-stimulated insulin secretion. QA promoted beta-cell function in vivo as islets from mice infused with QA displayed improved glucose-induced insulin secretion. A diet containing QA improved glucose tolerance in mice. CONCLUSIONS AND IMPLICATIONS: QA modulated intracellular Ca2+ homeostasis, enhancing glucose-stimulated insulin secretion in both INS-1E cells and mouse islets. By increasing mitochondrial Ca2+ , QA activated the coordinated stimulation of oxidative metabolism, mitochondrial ATP synthase-dependent respiration, and therefore insulin secretion. Bioactive agents raising mitochondrial Ca2+ in pancreatic beta-cells could be used to treat diabetes.


Assuntos
Produtos Biológicos/farmacologia , Cálcio/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Ácido Quínico/farmacologia , Actinidia/química , Animais , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Células Cultivadas , Café/química , Relação Dose-Resposta a Droga , Hippophae/química , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Prunus/química , Ácido Quínico/química , Ácido Quínico/isolamento & purificação , Ratos , Relação Estrutura-Atividade , Vaccinium macrocarpon/química , Vaccinium myrtillus/química
16.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051106

RESUMO

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilserinas/metabolismo , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/metabolismo , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Cultura Primária de Células , Transporte Proteico/fisiologia , Transdução de Sinais , Triglicerídeos/metabolismo
17.
Cell Stem Cell ; 24(3): 405-418.e7, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849366

RESUMO

It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD+-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80%, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation. In immune-deficient mice, NR increased the production of human leucocytes from hCD34+ progenitors. Our work demonstrates for the first time a positive effect of NAD+-boosting strategies on the most primitive blood stem cells, establishing a link between HSC mitochondrial stress, mitophagy, and stem-cell fate decision, and unveiling the potential of NR to improve recovery of patients suffering from hematological failure including post chemo- and radiotherapy.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , Mitocôndrias/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Niacinamida/metabolismo , Compostos de Piridínio
18.
Acta Physiol (Oxf) ; 225(2): e13179, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30144291

RESUMO

AIM: Healthy ageing interventions encompass regular exercise to prevent mitochondrial dysfunction, key player in sarcopenia pathogenesis. Mitochondrial biogenesis has been well documented, but mitochondrial remodelling in response to exercise training is poorly understood. Here we investigated fusion, fission and mitophagy before and after an exercise intervention in older adults. METHODS: Skeletal muscle biopsies were collected from 22 healthy sedentary men and women before and after 4 months of supervised training. Eight lifelong trained age- and gender-matched volunteers served as positive controls. Transmission electron microscopy was used to estimate mitochondrial content. Western blotting and qRT-PCR were used to detect changes in specific proteins and transcripts. RESULTS: After intervention, mitochondrial content increased to levels of controls. While enhancement of fusion was prevalent after intervention, inhibition of fission and increased mitophagy were dominant in controls. Similarly to PARKIN, BCL2L13 content was higher in controls. The observed molecular adaptations paralleled long-term effects of training on physical fitness, exercise efficiency and oxidative capacity. CONCLUSIONS: This study describes distinct patterns of molecular adaptations in human skeletal muscle under chronic exercise training. After 16 weeks of exercise, the pattern was dominated by fusion to increase mitochondrial content to the metabolic demands of exercise. In lifelong exercise, the pattern was dominated by mitophagy synchronized with increased fusion and decreased fission, indicating an increased mitochondrial turnover. In addition to these temporally distinct adaptive mechanisms, this study suggests for the first time a specific role of BCL2L13 in chronic exercise that requires constant maintenance of mitochondrial quality.


Assuntos
Exercício Físico , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mitofagia , Músculo Esquelético/fisiopatologia , Adaptação Fisiológica , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino
19.
Front Genet ; 9: 452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349557

RESUMO

Circadian rhythms provide a selective advantage by anticipating organismal nutrient needs and guaranteeing optimal metabolic capacity during active hours. Impairment of circadian rhythms is associated with increased risk of type 2 diabetes and emerging evidence suggests that metabolic diseases are linked to perturbed clock machinery. The circadian clock regulates many transcriptional-translational processes influencing whole cell metabolism and particularly mitochondrial activity. In this review, we survey the current literature related to cross-talks between mitochondria and the circadian clock and unravel putative molecular links. Understanding the mechanisms that link metabolism and circadian responses to transcriptional modifications will provide valuable insights toward innovative therapeutic strategies to combat the development of metabolic disease.

20.
Int Rev Cell Mol Biol ; 340: 129-167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072090

RESUMO

Despite their classic bean-shaped depiction, mitochondria have very different aspects in each cell type. From long filamentous structures to punctuated small round organelles. These shapes can dynamically change in response to nutrients and in situations of metabolic disease. However, why do mitochondria adapt different shapes and how is this determined? In this review, we will aim to understand different visions on how metabolic cues influence mitochondrial shape and vice-versa. This response can be dramatically different between tissues and cells, as illustrated by a large array of genetically engineered mouse models reported to date. We will use these models to understand the role of different mitochondrial dynamics-related proteins and processes.


Assuntos
Adaptação Fisiológica , Dinâmica Mitocondrial , Animais , Eucariotos/metabolismo , Eucariotos/fisiologia , Humanos , Camundongos , Proteínas Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA